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THEORY OF CONICAL-SCAN RADARS FOR LOW-ANGLE TRACKING

by

J. Litva

ABSTRACT

--In this report, a description of the tracking
behavior of conical-scan radars with low-angle
targets is presented. To begin, an equivalence
is established between monopulse and conical-scan
radars. Transformations are then developed from
this equivalence, which permit one to treat a
conical-scan radar as an equivalent monopulse
radar. An example is given of the use of these
transformations for simulating the low-angle
tracking behavior of conical-scan radars. The
simulated result is compared with a low-angle
conical-scan radar measurement. Since approxi-
nations are made in developing the theory
presented in this report, a discussion is given
on the range of tracking parameters for which
the theory is valid.-

1. INTRODUCTION

In the first part of Section 1, the scope and purpose of this report
are presented. A brief introduction is then given, in the remainder of
Section 1, to the low-angle tracking problem and to monopulse and conical-
scan radars.

1.1 SCOPE AND PURPOSE

Theoretical results for describing the behavior of conical-scan radars
with low-angle targets are presented in this report. The theoretical
development takes advantage of the similarity in behavior of monopulse and
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conical-scan radars. An equivalence will be demonstrated, which will allow
us to formulate the problem of modelling conical-scan radars in terms of an
equivalent monopulse radar. This approach is adopted simply because of the
difficulty of developing a theoretical model of a conical-scan radar starting
from basic principles.

In pursuing the equivalence approach, one effectively divides the main
problem into two smaller problems. First, equivalent monopulse patterns are
derived for the conical-scan radar. Secondly, one solves for the low-angle
target signature of the conical-scan system using the existing monopulse
radar theory (see Appendix A).

Simplifying assumptions are made in developing the monopulse equivalence
relations. It will be shown that any errors resulting from these approxima-
tions will be small, or in other words, of second order.

A typical example of the use of the theoretical results developed in
this report is presented in Section 6. The signature of a low-angle target
tracked by a particular conical-scan radar is derived. The computed result
is compared with a low-angle conical-scan radar measurement. Reasonable
agreement will be seen to exist between these two results.

The primary purpose of this report is to demonstrate the equivalence
between conical-scan and monopulse radars. Since conical-scan data are more
readily available than monopulse data, the motivation for this work arises
from a need for making results obtained by an analysis of these data accessi-
ble to furthering our understanding of the behavior of monopulse radars. A

secondary purpose is to provide a better understanding of the behavior of
conical-scan radars. The latter is an essential first step if the multipath
performance of conical-scan radars is to be improved.

It is intended that in future work the material contained in this
report be used to develop a theoretical model for conical-scan radars so that
a parametric study can be made of their low-angle tracking performance. The
model will permit use of existing experimental data for validating the conical-

scan theory and ultimately help our gaining insights into monopulse radar
theory. It is expected that the results given here will be used for improv-
ing the low-angle tracking behavior of monopulse radars. In fact, because
of the equivalence established here, data and results obtained for and by
either type of radar can in the future be used for improving the tracking
performance of both.

1.2 THE LOW-ANGLE TRACKING PROBLEM

The accuracy of conventional tracking radars has been demonstrated to
fall off quite markedly for targets over land and sea if the target's
elevation angles are less than one or two beamwidths1 '2 '3' 4 . At these low
elevation angles a portion of the electromagnetic (E-M) energy reflected
from the surface of the sea or land is received by the radar. The interfer-
ence of the direct and indirect E-M waves modifies both the amplitude and
phase of the radar signals used for aligning the aperture of the radar with
the incoming E-M waves (see Figure 1). This interference phenomenon, known
as multipath interference, produces large errors in the measured target
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Figure 1. Low-ngle racking Geometra Conical-an Radar

elevation angle, whose magnitude usually approaches one beamwidth. Multipath
interference can also cause a loss of track in the nulls of the radar's
amplitude interference pattern. Although the problem has been known from the
beginning of radar a solution has only been sought recently because of the
growing threat to naval ships from very low flying anti-ship missiles - so
called sea-skimmers.

1.3 TRACKING RADARS

Microwave tracking radars are used to measure coordinates of radar
targets; usually, range, elevation and azimuth. Tracking radars used in
association with weapons systems are normally called fire control radars.
They are designed primarily to protect the vehicle in which they are located
from air targets. Their measurements of target coordinates are used for fire
control, or in other words, to predict future target positions, so that the
carrier's weapons may be effectively deployed against targets. Shipborne and
tank-based tracking radars usually operate at X-band. They are normally
constrained to the higher end of the radar band of frequencies because of
space and weight constraints imposed by the vehicles in which they are
located. Long range ground-based systems, on the other hand, normally
operate at S- or C-band to take advantage of lower radar wave propagation

losses. In addition to tracking aircraft and missiles, ground-based systems
are used for more exotic functions, such as tracking satellites.

The elevation and azimuth of a target are derived from measurements of
the radar signal on two or more radar beams. These beams may be present at
all times or may exist sequentially in time. It follows that the antenna
terminal voltages will be different for the two beams, and if subtracted to
form an error voltage, the result will be a function of the angle between
the antenna boresight and the target's line-of-sight. The polarity of the
error voltage specifies the polarity of the error angle. When the error

voltage is zero, the antenna boresight coincides with the target's line-of-
sight.

The method by which the squinted radar beams are formed defines the
three generic types of tracking radars: Sequential lobing, conical-scan and
monopulse (simultaneous lobing). Of the three types of tracking radars, the
monopulse is the most recent in terms of technology and development. Conical
scanned radars are the most common type found in active service. Sequential
lobing radars represent a very old form of radar technology and are not
likely to be encountered in practice. They were used primarily as target
height finding radars.
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1.4 MONOPULSE RADARS

Monopulse radars, as their name suggests, can measure the target's
coordinates from a single radar pulse. They accomplish this by measuring the
amplitude of the incoming signal on squinted overlapping beams that coexist
continuously. The angle-of-arrival of the target can be derived from the
ratio of the amplitudes of the signals received on the two beams.

In practice, the radar generates two new radar signals from the ones
received by the squinted antenna beams. One is derived by summing the two
signals and the other by subtracting the two signals. The resulting signals
are called sum and difference signals. One can think of the sum and differ-
ence sign.ls originating from sum and difference beams rather than from the
elemental monopulse beams. The error signal is defined as the real part of
the ratio of the difference signal and the sum signal (see Appendix A).
Essentially, the error signal is the difference signal normalized by the sum
signal so as to be independent of target cross-section and range. The sum
signal is also used for target ranging and as a phase reference for defining
the real part of the error voltage.

Since angle measurements are required in two dimensions, two error
functions are required, one for azimuth tracking and the other for elevation
tracking. Normally, monopulse radars have four beams which are divided into
two pairs; one pair giving beams squinted along the vertical axis to measure
elevation angle and the other pair giving beams squinted along the horizontal
axis to measure azimuth angle.

Monopulse radars are capable of tracking single targets with an
accuracy of 1-2 percent of the antenna beamwidth (BW). When tracking multiple
targets separated by less than one BW, the radars' accuracy is degraded
because of interference effects which produce erroneous error signals. A
case in point is the low-angle tracking problem, where the target and its
image are separated by less than one BW. For low-angle targets the accuracy
of monopulse radars is reduced to 0.25-1.0 BW, depending on sea state. The
greatest target tracking errors occur for perfectly smooth seas.

The behavior of monopulse radars tracking low-angle targets is quite
well documented in the literature. White 5, for example, gives a low-angle
target signature or plot of measured target height versus range for an
experimental monopulse radar operating at S-band over smooth water. The
S-band radar result shows a well-defined interference pattern. Whenever
the change in range of the target resulted in the difference in path lengths
for the direct and indirect signals to vary by one wavelength a cycle was
added to the interference pattern. The peak-to-peak magnitude of the inter-
ference pattern is a function of the radar antenna BW and the angular
separation of the target and its image. As the surface of the sea becomes
perturbed a portion of the reflected or indirect signal, which previously
was totally coherent, becomes random or diffuse and a noise-like component
appears on the target signature. The ratio of the coherent to the incoherent
components of the reflected signal decreases with increasing sea state. At
about sea state 2-3, the target signature changes from being quasi-sinusoidal
to becoming predominantly random or noise-like.
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The theory for describing the behavior of monopulse radars with low-
angle targets is also well documented in the literature

5 '6'7 '8. White 5

derived a theory which agreed with experimental results. Equations for
describing the low-angle behavior of monopulse radars are derived in Appendix
A. Their development is very straightforward, which demonstrates the relative
ease of modelling monopulse radars.

1.5 CONICAL-SCAN RADARS

Conical-scan radars 9 perform sequentially, by means of a rotating beam,
what monopulse radars accomplish on a single pulse basis. The beam is offset
with respect to the rotation axis by an angle called the squint angle.
Typically, it is rotated about this axis at a rate of about 30 Hz. The
rotating beam causes both the energy on target and the effective gain of the
radar antenna to target echoes to be modulated (see Figure 2). These two
effects impose a modulation on the radar signal. The amplitude of this
modulation is a function of the magnitude of the target's error angle and its
phase is a function of the elevation-azimuth components of the target's error
angle. To remove the effects of changing radar cross-section and target
range, the radar signal is normalized by the AGC of the radar receiver. The
radar signal is then detected in an amplitude detector and low pass filter
giving the radar error signal. Sine and cosine signals are generated by a
two-phase generator which is driven by the mechanism that rotates the antenna
beam. These signals are multiplied with the radar error voltage in product
detectors and used for positioning the radar in azimuth and elevation (see
Figure 3).

POINT TARGET
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Very little work has been carried out to date on defining the behavior

of conical-scan radars tracking low-angle targets. It is suspected that the

reason for the absence of results is the expectation within the radar commu-

nity of the eventual replacement of conical-scan radars by monopulse radars.
Therefore workers have tended to concentrate on monopulse radars because they
have the greatest probability of being chosen for any modifications which
improve the performance of tracking radars. Even though it may be true that
newly acquired tracking radars tend to be of the monopulse variety, it is
also true that existing conical-scan radars are being refurbished so as to
extend their operational life. This suggests a need for fully understanding
the behavior of conical-scan radars; in particular, their behavior with low-
angle targets.

Dax 8 stated that monopulse and conical-scan radars have similar low-
angle tracking behaviors. An example of a low-angle result for a conical-
scan radar operating at a frequency of 2.797 GHz is given by Dunn and Howard 0 .
There is a close similarity between this result and that given by White 5 for
a monopulse radar operating at a frequency of 2.857 GHz. An early conical-

scan result is given by Fishbackll which is consistent with those given by

White and Dunn and Howard.

Barton and Ward4 describe a procedure for constructing an equivalent
difference pattern for a conical-scan radar. They suggest that a difference
signal can be derived by subtracting the beam voltage patterns at the
extreme positions of the radar's scan. The resulting pattern is found to

consist of a split main lobe and sidelobes which are almost identical to the
difference pattern of a monopulse system. They do not suggest a procedure
for deriving an equivalent sum signal for a conical-scan radar.

A brief discussion of the equivalence of monopulse and conical-scan
radars in given in Ref. 13. Some theoretical results are also presented.
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Although the presentation is both hurried and sketchy, it was used initially

as a guide in developing the theory presented in this report.

2. CONICAL-SCAN RADAR PARAMETERS

Conical-scan radar parameters are defined in the first part of Section
2. This is followed by a derivation for the error-voltage of a conical-scan
radar tracking a low-angle target.

2.1 THE LOW-ANGLE GEOMETRY

The geometry for low-angle tracking with a conical-scan radar is given
in Figure 1. There are two paths by which energy propagates from the radar

to the target or from the target to the radar. These are the direct and
indirect paths. The radar signals that propagate along these paths are called
respectively the direct and indirect signals. At times it will be convenient
to think of the indirect ray as originating from an image target. Although
not shown in Figure 1, it is located directly below the target on the
extension of the indirect ray from the radar to its point of reflection on the
surface of the water. Whenever signals propagate along the indirect path,
both their phase and amplitude are modified upon reflection from the surface
of the water. The parameters defined* in Figure 1 are:

e radar squint angle (angle between the beam and rotation axes)

q nl farvlo h iet a ihrsett h emai

0= angle of arrival of the idirect ray with respect to the beam axis

R = complex reflection coefficient (p = magnitude of reflection
coefficient; 0 phase of reflection coefficient).

2.2 CONICAL-SCAN RADAR RF VOLTAGE

By referring to Figure 1, one can write the magnitude of the direct
signal at the target as

G'(0 d)E 0 e (1)

whiere w - angular frequency of transmitter. radians/sec

G()=antenna voltage gain.

Theweore shown here at a particular instant when the beam axis, rotation axis, direct path and indirect path

happen to fie in the same plane. A more general situation is given in Figure 4.



8

The uarameter E in eqn. (1) is given by

E = Inp(2)Eo r 4f

and gives the amplitude of the electric field at the target for a radar

antenna which radiates isotropically in free space,

where r = range to the target

P = peak power

= impedance of free space (n = E/H)

Similarly, the magnitude of the indirect signal at the target is given by

G' (8 i)p Eo ej(Wt-) (3)

where D = the total phase difference with respect to the direct path, due

to both reflection and path length difference.

p = the magnitude of the reflection coefficient.

The total RF electric field, ETT at the target is

ETT = G'(0d)E° ej
mt + G'( i)E 0p ej(W t-I) (4)

Let us now trace the radar signals back to the radar by both the direct
and the indirect paths.

The radar RF voltage, due to the direct signal, is proportional to

G'(0d)ETT, (5)

and that due to the indirect signal is proportional to

G'(ei)p e- j P ETT. (6)

The total radar RF voltage VT is proportional to

G'(6d)ETT + G'(0i)p ETT e . (7)

and can be written in the form

VT  KE. G (6 eeJt + 2G'(0 I)G' (d)p e j (ut-$) + G(Oi)P2 e j (wt-2() (8)T 0 i d



where G(8) - antenna power gain =[G(6)]2

K = parameter, which is a function of target range*, target
cross-section and radar wavelength.

If we define the real part of [Vr] to be VT, then

VT = K E (L coswt + M cos(wt-0) + N cos (wt-20)1 (9)T o

where

L = G(6d) ,  (10)

M = 2pG'(0)G'(0 d),  (11)

and

N = p2G(ei). (12)

Expression (9) gives the RF radar voltage for a conical scan radar tracking a
low-angle target over a perfectly smooth sea surface. The first term
describes the signal that propagates out to the target and back again, totally
by the direct path. The second describes two signals; one that propagates
out to the target via the direct path and back again via the indirect path
and another that propagates along these same two paths but in the reverse
direction. The last term accounts for the effect of the signal that propagates
out and back again via the indirect path.

A deeper appreciation for the basic principle underlying conical-scan
radars can be obtained from Figure 2. This figure shows the antenna beam
intercepting a target at two different instances separated by one-half of an
antenna scan period. Taken together these two beam patterns are defined to
be the time-displaced conical-scan beam pattern. As the antenna beam
rotates, its point of intersection with the target axis moves from point (1)
to point (2) and back again. This motion causes the radar signal [eqn. (9)]
to become modulated by signals having frequency f. and harmonics of fs, where
fs is the antenna rotation rate.

For a single target the amplitude of the modulation A1 is proportional
to the offset of the target line-of-sight with the antenna rotation axis.
The radar error signal is normalized by the dc component of the radar signal.
i is used as an AGC signal for controlling the gain of the radar receiver's
I amplifiers.

2.3 DEFINITION OF ANTENNA BEAMS

The antenna voltage gain G' in eqn.2(8) can be represented by a number
of functions, such as, sinx/x, cos x, ex , etc.. Skolnik9 [p. 171, eqn.

* It has been implicitly assumed that for purposes of deriving the magnitude of the target echo the direct and
indirect path lengths can be taken to be equal.



10

5.2], for example, uses a Gaussian function, which when expressed as a
voltage gain can be written as

GO = G e 2 (13)
0

where 0 = angle in degrees between the antenna-beam axis and the target
axis

G 0= maximum antenna power gain

a2 = constant - 2.776/02 where 0 is the 3 dB beamwidth measured in
degrees. B B

Two functional representations will be used in this report for defining
radar antenna beam patterns. One is based on the Gaussian function and the
other on a composite of sinx/x functions. They both give patterns which are
representative of typical fire control radar beam patterns, but with varying
degrees of accuracy. The first tends to be less accurate than the second,
mainly because it underestimates the magnitude of the antenna sidelobes. On
the other hand the computational complexities inherent in its implementation
are less than with the second. In terms of meeting the main objective of
this report, to demonstrate the equivalence of monopulse and radars, they
will be seen to give similar results.

3. ANTENNA SCANNING FUNCTION

We will find that to treat conical scan radars theoretically one needs
to define an antenna scanning function.

3.1 DEFINITION

As a result of its rotation, the gain of a conical-scan beam along a
target axis is a function of time, if the rotation and target axes are not
coincident. The antenna gain along the target axis can be expressed in terms
of a series similar to a Fourier series. This series has been called the
antenna scanning function in the NATO Sub Group 4 Report1 3. We will follow
this nomenclature here.

The form of the antenna scanning function is rather important because
it is used for deriving the radar error signal. With the radar error signal
one is able to deduce the characteristics of conical-scan radars with low-
angle targets.

In Figure 3 are illustrated the processes that take place within a
conical-scan radar in deriving an error signal. These are described in
greater detail in Section 4.2. Basically, the antenna scanning function is
used to describe the first step in this derivation, that is, reception of
the direct and indirect rays with a rotating beam.
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3.2 ANTENNA SCANNING FUNCTION FOR GAUSSIAN ANTENNA BEAMS

Skolnik9 derived an antenna scanning function for the Gaussian antenna
beam given by eqn. (13). His notation differs from that used here. Skolnik
called his function the "antenna scan-modulation factor". Because of its
importance, Skolnik's derivation is repeated here.

Consider Figure 4, which gives a head-on view of a conical-scan antenna
beam. Angles 6q, 0 and 6 are defined in this diagram by lengths of arc p8,
Peq, PeT on a sphere of radius p. A somewhat restricted definition of the
first two was given earlier in the discussion of Figure 1. Here we see that
e represents either 6d or 61, depending on whether the target or its image is
under consideration, 0 defines the angle between the antenna beam and
rotation axes and OT t~e angle between the antenna rotation and target axes.
The angle s defines the rotational phase of the antenna beam with respect to
a reference axis; o is the angle defined by the target and the reference
axis. Since the distance 0e, Pe , and U6T are small, they may be related by

the law of cosines to the angle s-Eo

(pe)2 = (peq)2 + (hOT)2 - 2p2eq T cos( s-o). (14)

The substitution of 0 into eqn. (13) from eqn. (14), with G =1 gives the
antenna scanning function o

G'(0) - exp[-a 2 (02 + 02)/2] exp[a 20 0 cos(&s-E )]. (15)
q T q T so

In this report we call eqn. (15) the Skolnik antenna scanning function. The
following realtionship may be derived from expressions for Bessel functions

exp(x cos*) I (x) + 2 E I (x)cosn*, (16)
0 n= n

where In(x) is the nth-order Bessel function of imaginary coefficient.
[Skolnik erroneously used exp(-x cos*).] In Whittaker and Watson 14, In(x) is

: 00

CONTOUR4

CENTER OF
ANTENNA

BEAM 
T i

XIS OF,
OATION

LOCUS OF ANTENNA-SEAM
CENTER

Figure 4. Head-on View of Conical-scan Antenna Beam (After: Skolnik'J
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defined by In(x) = iJ .(ix), where Jn(x) is called the Bessel coefficient ofn In

order n, and i is the complex integer. Using eqn. (16), one can write (15)
as

G'(t) exp[-a 2(62 + 62)/2) [ eqeT) + 2 E I (a20 )cos(nwst-n o). (17)
q T q T n~ln qT

with w st being substituted for &s, where w. = 21fs. To simplify the algebra,

let

K" = {exp[-a2(62 + 02)/21} o (a 2 0 T)0 (18)

and

21 (a
2e 0)

Kn (a2e ( )  (19)

0 q T

With these simplifications, the scanning function (17) becomes

G'(t) = K" + Z K cos(nwt-nc)] (20)
n=l

Expression (20) is somewhat complex but it does show that the antenna scanning
function consists of a series which is similar to a Fourier series. There are
terms which can be identified as dc, first-harmonic, second-harmonic and so on.

4. RADAR ERROR VOLTAGE AND SETTLING FUNCTION

In order to derive the radar error signal (VTI, one must find the
amplitude of eqn. (9). The amplitude can be obtained by quadrature demodula-
tion and low-pass filtering. The results of detection of VT, or more conven-
iently VT/KEo, is most easily found by writing VT/KEo in terms of its in-
phase I and quadrature - phase Q components

VT
T [L + M cosO + N cos20]coswt + [M sinO + N sin2f]sinwt. (21)

0

It follows from eqn. (21) that

I = L + M cosf + N cos20

Q = M sinO + N sin2O

The amplitude of eqn. (21) is given by

-i. [12 + Q21h. (22)
oE
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If the expressions for I and Q are substituted into eqn. (22) and
double angle trigometric relations are used, one obtains

LL= (L2 + M2 + N2 + 2LM cosO + 2LN cos2$ + 2MN cos@]1 . (23)
KE

0

4.1 GENERAL SOLUTION

One would wish to express eqn. (22) as a function of terms which are
separable raher than being lumped together in an argument of a square root
function. Let us try an expression of the form

T X + Y coso + Z, (24)
0

where X, Y and Z are unknowns.

Upon squaring eqn. (24) one obtains

1 oTI = X2 + Z2 + 2XZ + 2Y(X+Z)cosO + Y2 cos 2o. (25)

The identity cos20 2cos 2o-l is substituted into eqn. (23) so that eqn. (23)
is expressed in terms of cosO and cos2O. If the constant term and coeffici-
ents of the terms in cosO and cos 2o in eqns. (23) [modified] and (25) are
equated, the following are obtained:

(X+Z) 2 = (L+N)2 + M2  4LN

Y(X+Z) = M(L+N)

y2 - 4LN

The similarity between the two sides of the second equation might lead one to
guess that the values of the unknowns X, Y and Z are: X=L, Y=M and Z-N. If
this choice of values is valid it then follows from the first equation that
the identity

M2-4LN - 0 (26)

must also be valid. By direct substitution in eqn. (26) of eqns. (10), (11)
and (12) one can easily demonstrate that eqn. (26) is always valid. As a
final test of our choice for the values of X, Y and Z, the last equation must
also be a valid identity. By comparing eqn. (26) and the last equation one
can see that it is indeed valid. Therefore, eqn. (24) is a valid expression
for eqn. (23) with X-L, Y-M and Z-N. Substitution of these values into eqn.
(24) gives the sought after solution
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V - L + M cosO + N. (27)
KE0

As a final check, it can be shown that the square of eqn. (27) can be written,
with the use of eqn. (26), in a form identical to the square of eqn. (23).

4.2 GAUSSIAN-BEAM SCANNING FUNCTION SOLUTION

If one uses eqn. (20) as the antenna scanning function in eqns. (10),
(II) and (12) and subscripts or superscripts, d(direct) and i(indirect), the
constants in eqn. (27) are defined as being

(K) [+ E K cos(nw t-nt d)]
2

n s

co nw 0 i
= K."K 1

1K E+ K d cosK cos(nw t-nd 1 2 11 n=l n n d] n '

and
2 1 iosn t-n~i)].

p2(Ki) + E Ki cos(naSn= I n

By substituting these constants into eqn. (27) and making use of the identity
cosAcosB = 1/2[cos(A+B)+cos(A-B)] we obtain

= (K")2  1 + 2 Kd cos(nKKt-n&d ) + E E nI

0n- n n-i =l1 2

[cos{(n+t)wst-Ed(n+t)} + cos{ (n-)w st-&d (n-9)}]I

+ di c + ,, Kd cos(nwt-ntd)d 2Odi  nos=1 n 8l d

ii
+ E K cos(nw t-n~i) + . E. 2

nini n n-lRA= 2

[Cos(+tw t-nd+tP )) + ofnkwst(&d

nb K0 
K iK i

+ p2 (K'@) 2  1 + 2 E (-1)n Ki cos(nwst-ni ) + E z n£

n=i n n-1 i1 2
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[cos{(n+t)wst-(n+t)%1 + cos{ (n-L)w st-(n-.)F 1
}] • (28)

In the demodulation process IVTI/KEo is low-pass filtered with a filter

whose cut-off frequency f. = Wfs/2n. Taking the filtering into account and

retaining only first-order terms in eqn. (28) we obtain

(K ) 2  1 + 4)2 + (K1 2 12K~ + K K] cos(WtT12.d dKE KK

0 1 1

SK ) - cos[(st-(2 d-i)] + *s K c SWst- (

+ p2(K")2 [1 + + p2(K )2  2K + K KicoS(%t-EQ. (29)

The normalized radar error signal IVTIW is derived from eqn. (29) by multi-

plying through by KEo, and separating tije ac and dc terms. The signal IVTIN
consists of a ratio whose numerator is comprised 

of the ac terms and denomina-

tor is comprised of the dc terms, thus

K) d d d +2-K"K" cos$ Kdi o~~~d
(K)[2Kl+KiK 2 ]c°S(wst- d) +Pd i

di di

KIK

coS(t_ +K1 cos(w t-_(2& d + 1 + co[t-( d2i)]

+ +22Kd-22 s di2& |

(K2 [ 2KI+K2KI] co (s -i) (29)

h Note that the parameter KE , which contains factors describing the

strength of the radar echo, has disappeared. 
Its disappearance is due to its

being a co rton factor in both the numerator and denominator of 
eq-. (30).

Equation (30) is therefore independent of the amplitudes of the direct and

Sindirect signals and is a function only 
of their angles-of-arrval and phase

difference. For only one target, eqn. (30) would solely be a function of the

signal' s angle-of-arrival.

The radar signal represented by eqn. (30) is fed into two error angle

detectors. These detectors are phase sensitive detectors and yield 
elevation

and azimuth antenna pointing-angle information. The outputs of the detectorsare used to drive servo-motors which control the elevation and azimuth of
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the radar antenna. The conical-scan radar achieves pointing-angle equilib-
rium when the detector outputs are reduced to zero, which for a single target
would be achieved only if the antenna rotation axis was pointed directly at
the target. In the elevation error angle detector, eqn. (30) is multiplied
by coswst* and in the azimuth error detector it is multiplied by sinwst.

When eqn. (30) is multiplied by coS(wst), low pass filtered so that
only d-c and near a-c terms remain the result is described by

(K d2 d +Kd dcs d +Ki cost
2 [2K, + 1K2] cosd + pKK cos K COS K i

2 Kd i (K 2  i

Kdi 2 [ d i i

+ 2K cos(2 d-&i) + K cos(Cd-2Ci) + p -i--- (2K1 + K2K1]cosF
2E2 (31)

(Kd) 2 1 + +2PKK' " cost J1 + 2 + p2 (Ki)2 II +42

E

where, c is called the radar elevation error signal.
c

Similarly, if eqn. (29) is multiplied by sinwst and low-pass filtered
the azimuth radar error signal c

A is

2- d d d " " i dsn d +isn
(q)2 [2K d + KdK 2]sinEd + pK"K" cost K sin% +K 1 sing

d i d i
K K 12K (" )2  i

+ 2K1 sin(2&d- Ei) +  si-- sn(d-2&) + p2 L - [2K1 + K2K]sinEic - 2 (32)c dZ 2 Z

(K) 2 [1 + + 2pKK' " cost + _ + 2(Kf)2  2

dd

If a further omission of higher order terms, such as KdK 2 , is made in
eqns. (31) and (32) they become

+ K"K" o d cost + i cos~ i. + p2(K")2 Ki cos4
E (K2 cs1 d d 1 1 d K1  1 i

- K ) (33)

(K")2  + c + 2pKK'" cost + + p2 (K,)2 [

and

(K")2 K d sing + pK"K" cost ing + Ki singi+ p2 (K") 2 Ki sing
A d 1 d d i I fi dlid I i I i * (34)

(K)2 + 1 + 2pK"K" cost [1 + + p2(K")2 1 + -

1 2 J di1 1 i + 2

Note: Skolnik" Ip. 173, eqn. (5.121 and (. 131/ has mistakenly identified the co$swt term with the arimuth error
end the sinwst term with the elevation error.
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All of the approximations made in deriving eqns. (33) and (34) have
involved omitting terms in the amplitudes of the cosine functions in eqn. (20)
with n>l. In Section 7 we will see that for small target error angles the
omitted terms are considerably smaller than those that are retained. There-
fore it will be seen that the approximations made in arriving at eqns. (33)
and (34) are justified.

4.2.1 Radar Settling Function

The numerator of eqn. (33) is called the conical-scan elevation settling
function, F It has importance to this work because it defines the equilib-
rium elevation pointing angle for the radar antenna. The radar's elevation
servo-system is designed such that it achieves a state of equilibrium only
when the error angle voltage CE becomes zero, which is defined by the condi-
tion Fc=O. The radar elevation settling function is given by

d 2 C OSd i + p2(K")2 K cos~i. (35)

F a K (K")2 Cosfd + pKdKi cosO [K cosd + K1 cosK 1

5. COMPARISON OF CONICAL-SCAN AND MONOPULSE RADARS

In Section 5 analytical results derived in Section 4.2 are compared
with equations describing the low-angle behavior of monopulse radars. For
convenience a derivation of the monopulse equations is given in Appendix A.

5.1 EQUIVALENCE BETWEEN MONOPULSE AND CONICAL-SCAN RADARS

The settling function for a monopulse radar"5 (numerator of eqn (A6)) is

FM = gAdgd + p(gAdgzi + gAigd ) coso + p2g9igEi (36)

where gAd - gain of the difference beam for the direct signal

g =d - gain of the sum beam for the direct signal

gAi = gain of the difference beam for the indirect signal

ge- M gain of the sum beam for the indirect signal

The form of the settling function of the conical-scan radar (eqn. (35))
is very similar to that for a monopulse radar (eqn. (36)). This agreement
suggests a similarity in their low-angle tracking behavior.

If one is interested only in describing the normal elevation angle
tracking behavior for conical-scan and monopulse radars, absolute antenna
gains need not be specified when using eqns. (35) and (36). In either case,
the equilibrium or settling angle is defined by setting the scanning function
equal to zero. Therefore, only relative antenna gain need be measured for
determining their low-angle target tracking behavior.
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5.2 MONOPULSE TRANSFORMATIONS

It follows from a term-by-term comparison of eqns. (35) and (36) that a
conical-scan radar can be treated as a monopulse radar provided one makes the
following transformations.

K- gd (37)

Kh, d cos d  (38)dK1 d Ad

K t 
+ g i (39)

I E

KIK cosE g (40)

These transformations assume that the radar target is well behaved with
a cross-section that is constant or varies only slowly with time. Rapidly
varying targets may have a component of their fluctuations which causes a
modulation of frequency f. to appear on the radar signal and to be erroneously
interpreted as target tracking information.

For defining the low-angle tracking behavior of conical-scan radars,
the parameters in eqns. (37)-(40) can be derived in two ways. First, they
can be evaluated directly from the expressions given in Section 3.2, which
were derived for a Gaussian approximation to the antenna pattern. Secondly,
as will be shown in Section 5.2, they can be derived directly from the
measured antenna pattern.

5.3 MONOPULSE EQUIVALENT ERROR SIGNAL

When the transformations given by eqns. (37) to (40) are substituted
into eqn. (33) it takes the form

E g~dgEd + pcos {gAdgEi + gEdgAl} + P2 g igai (41)

z 1 2 1 + + I + P2i + 2
+ 2gEdgEi Cs 1 2gi[

E
where E E error signal.c

By means of eqns. (37)-(40), the numerator of eqn. (33) has been
rewritten so as to have the same form as the numerator of the comparable
monopulse expression given in eqn. (A6). The denominators of the expressions
for conical-scan and monopulse error-signals differ by the factors given by
the square brackets in eqn. (33) or eqn. (41). To achieve agreement between
the denominators of eqns. (41) and (A6), transformations (37) and (39) must
be modified to take respectively the forms:

L n
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S= Kc's [+1
g~d

For small error angles (deviations of the target line-of-sight with the
antenna rotation-axis) the transformations can be written as:

~ K~[1 +(K~)](2
gEd d

gz' K [' + -K . (43)

A representative value for the second term in the square brackets of
eqns. (42) and (43) can be derived using parameters and experimental data for

a typical conical-scan radar. Such a result is given by Figure 7(b). It
shows a low-angle target signature measured with a Prelort radar. The nominal

height of the target was 100 yards.

From Figure 7(b) one can find a maximum value for the target error
angles. Taking a range of 25 Kyds, for example, the maximum indicated target
height error is approximately 100 yards. This corresponds to an error angle

of 0.230.

From eqn. (19), we find that
21 (a2  ' (T)

A representative value for the arguments of the modifie Bessel functions I
and Ie is

aeqT = 2.*776 x.0.45 x 0.23 - 0.32.

From Wylie1 6 tp. 359] we find the value of K corresponding to the
above argument is 0.3. It follows that the bracketed terms in eqns. (42) and
(43) are approximately equal to 1.023. Therefore, for small target error
angles, the transformations given by eqns. (42) and (43) are equivalent to
those given respectively by eqns. (37) and (39), and eqn. (41) is identical
to eqn. (A6).

If one takes advantage of the approximate equality of gd with g nd
abovwith gnis eqn. (41) can be written as

E = ~d~ + pcos$ {gd~ + g~dgdl + p2 gig (44

Cc - Ed + 20~glcos + p i "(4
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5.4 DIFFERENCES BETWEEN MONOPULSE AND CONICAL-SCAN RADARS

One of the main differences between a monopulse radar and a conical-scan
radar is the time taken by each to obtain sensing information. A monopulse
radar is capable of tracking a target on a pulse-by-pulse basis, which suggests
a maximum sampling rate equal to the prf of the radar. On the other hand, a
conical-scan radar needs to process somewhat more than four pulses 9 to track
a target. Therefore, for radars with equal prfs, the maximum data rate is
greater for monopulse than for conical-scan radars.

The inherently lower data rates of conical-scan radars, do not usually
cause their performance to be degraded, per se, compared to that of monopulse
radars. Normally, bandwidths of radar servo-systems are much lower than
typical prfs. Therefore, the response times for both monopulse and conical-
scan radars are usually limited by the response times of their antenna
systems. Typically, these are approximately equal.

For low-angle and multiple target tracking, monopulse radars are
capable of providing more target intormation than conical-scan radars. This
difference arises from a single fact: the phase of the radar signal is
preserved in monopulse radars and discarded in conical-scan radars. Multiple
targets affect, not only the amplitude of the radar signal, whether it be a
monopulse or conical-scan system, but also its phase. In a monopulse system
both the amplitude and phase of the radar signal can be measured because the
sum signal is available as a phase reference. Usually, in an operational
system, only the in-phase component is measured, but it is possible, by the
addition of another IF channel to the radar receiver to also measure the
quadrature-phase component. Resolution of radar error signals into in-phase
and quadrature-phase components is not possible in a conical-scan system
because there is no signal equivalent to a monopulse sum-signal to serve as
a reference.

The essential difference between monopulse and conical-scan radars
results from the manner in which these two systems receive tracking informa-
tion. Monopulse radars receive information continuously from two independent
beams, whereas conical-scan radars receive information from only one beam
whose pointing direction is changing continuously. It follows that conical-
scan systems receive information at a lower rate than monopulse radar systems.
They can only be considered to be equivalent if the final data rate is slowed
sufficiently by integration effects, such as those provided by the inertia of
antenna systems, so that their differences do not become apparent. It is
only for these lower data rates that a conical-scan radar can be considered
to be receiving information from an equivalent split beam and treated as a
monopulse radar.

6. MONOPULSE EQUIVALENT TO THE PRELORT RADAR

This section gives an example of the application of the conical-scan
radar theory developed in Sections 4 and 5. The example consists of simula-
ting the low-angle tracking behavior of a Prelort radar.
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6.1 PRELORT RADAR PARAMETERS

Low-angle data have been obtained, with two conical-scan Prelort
tracking radars situated at Primrose Lake, Alberta. These and additional
data that were collected in 1979 will be used to test and develop low-angle
tracking algorithms. The radars operate in the C-band, are collocated but
separated in height by 30 feet. Table 1 lists some pertinent parameters.

6.2 EQUIVALENT MONOPULSE ANTENNA PATTERNS

Before the Primrose Lake data can be used for testing tracking algori-
thms, mathematical models of the Prelort radars must first be developed.
This requires that one measures the radar antenna pattern and then derives
the equivalent monopulse antenna patterns. Modelling of the signature or
tracking behavior of a monopulse radar with low-angle targets is rather
straightforward once the sum and difference antenna patterns are known. It
is simply a matter of applying vector arithmetic to vectors whose magnitude
and phase are determined by antenna gains, coefficients of reflection and
curved earth geometry.

TABLE 1
Prelort Radar Parameters

(i Antenna height (above surface of water) - 293 feet (Radar 2)
323 Feet (Radar 1)

(ii) Frequency - variable, C-band, 5450-5825 MHz

(iii) Antenna scan rate - 30 Hz

(iv) Antenna - 14 ft. disc reflector
sidelobe level 20 dB
bearnwidth - 0.90
polarization, left and right hand selectable by the operator

circular, vertical and horizontal linear !
squint angle - 0.45 °

(v) PRF - variable, 160, 320, and 640 pulses per second

(vi) Pulsewidth - 0.25, 0.5 and 1.0 psec

(vii) Output power - 250 kw peak

(viii) Range resolution - better than one yard*

ix) Tracking range (beacon target) - 500 yards to 2000 nmi

(x) Tracking range (aircraft target) - 100 nmi

Using Split-gate Time Discrimination Techniques (see Barton and Waro4 , pp. 72-78)
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When deriving equivalent monopulse antenna patterns f or a conical-scan
radar, one should treat the numerator and denominator of eqn. (41) independently.
The numerators of eqns. (41) and (A6) are obviously equal. The equivalence of -

their denominators is not as straightforward and has required special consid-
eration. We are primarily interested in deriving equivalent patterns for the
numerator of eqn. (41) because it is the expression from which the settling
function is derived and which defines the equilibrium pointing angle for the
radar. For small error-angles it was found that the square bracketed factors
in the denominator of eqn. (41) are approximately equal to one. As concluded
earlier, when dealing with small error angles, eqns. (41) and (A6) can there-
fore be considered to be mathematical equivalents. It follows that the
equivalent patterns expressly derived here for the numerator of eqn. (41) are
also applicable to the whole of eqn. (41).

Equation (20) shows that the dc and first ac components of the radar
scanning function are respectively K" and K"KI. The equivalent sum patterns
are, according to eqns. (37) and (39), given by the dc component of the
antenna scanning function. Equations (38) and (40) imply that the equivalent
difference pattern would be given by the first ac component of the antenna
scanning function if lcosj =1. Measurements of the low-angle tracking
behavior of conical-scan radars show that the azimuth error angles are less
than 0.18 times the elevation error angles. The ratio of elevation to azimuth
deviations suggests that departs by no more than 100 from 0' or 180%.
Therefore, to a good approximation ICOSO = 1 and the equivalent difference
pattern is equal to the first ac component of the antenna scanning function.

The Prelort radar's antenna pattern has not yet been measured. In the
interim it is assumed that its pattern can be represented by a typical radar
antenna pattern. In Figure 5 is shown a typical instantaneous conical-scan
beam pattern, comprised of the beam at the extremes of its vertical motion
during one cycle of its rotation. Each pattern in Figure 5 is synthesized
from a weighted sum of five sin x/x functions. The sin x/x functions are
separated in angle by ir radians, so that, peaks and first nulls of neighboring
functions are coincident. The patterns in Figure 5 have beamwidths of 0.9'
and are separated by 0.9%. The level of the first sidelobes is -26 dB, which
is lower than specified in Table 1, but otherwise it is expected that these
patterns will serve as a good approximation to the Prelort radar patterns.

In Figure 6 we are given equivalent monopulse patterns derived from the
patterns in Figure 5. They were calculated from antenna scanning functions
derived for a series of target error angles. The scanning functions were
calculated directly from the patterns in Figure 5 by means of a graphical
technique described in Section 7.

Harmonic analysis techniques were used to derive the dc components of
the antenna scanning functions. The dc components define the equivalent sum
pattern. Rather than continue with harmonic analysis, for deriving the
equivalent difference pattern, it was found to be simpler to use the instan-
taneous patterns in Figure 5 and by subtraction derive the patterns directly.
It was seen in Figure 2 that the amplitude of the time varying portion of the
antenna scanning function is nearly equal to one-half the difference in gains
of the instantaneous patterns. If the scanning function is sinusoidal, or in
other words its harmonic content low, the parameter Al in Figure 2 is nearly
equal to the amplitude of the first ac component of the antenna scanning
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function. In Section 7 it will be shown that the first harmonic of the
antenna scanning function is the predominant time-varying component.

Wa 0.5
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Figure 5. Typical Radar Antenna Patterns Separated by One-half of a Beam width
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Figure 6. Equivalent Monopulee Sum and Difference Patterns for the Prelort Conical-wan Radar
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6.3 MEASURED CONICAL-SCAN RADAR SIGNATURE

Figure 7(a) gives a simulation of the low-angle tracking behavior of a
conical-scan radar tracking a target whose nominal height is 100 yards. It
was derived from a software model of a monopulse radar using the equivalent
patterns given in Figure 6. The measured behavior (signature) of the Prelort
radar for the same target profile is shown in Figure 7(b).
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The agreement between the two results in Figure 7 is reasonable.
Discrepancies can be explained as being due to factors other than the use of
the equivalent monopulse patterns in modelling the Prelort radar. The
dominant source of error in the simulated result is attributed to the
measurement of target height. The simulated data were derived for a target
profile measured independently of the radar. Measurements were made by both
a sensitive barameter located in the target aircraft and a system of ground-
based phototheodolites. The maximum discrepancy between target heights
measured by these two systems of instruments was about 3.3 yards.

Small deviations in target height can have a large effect on the radar's
tracking behavior. For example, a change in target height of 3.3 yards for a
target at a height of 100 yards and a range of 20 Kyds produces a change of
3600 in 0. In other words, the target height measured by the radar can vary
through a complete cycle, consisting of a null and a peak, with as small a
change in target height as that quoted above. The radar output is therefore
a very sensitive function of target height and range. Since the target
height was only known to an accuracy of ±1.5 yards it follows that the
discrepancies between Figures 7(a) and 7(b) can be accounred for, soley by
inaccuracies in target height.

7. EXAMPLES OF ANTENNA SCANNING FUNCTIONS

Typical antenna scanning functions are presented in Section 7 which are
derived for a Prelort radar. It will be shown that for target error angles
that are likely to be encountered in practice, the first-harmonic of the
Fourier series representation for these functions is dominant. This result
will permit us to conclude that the linear conical-scan theory developed in
this report accurately describes the low-angle tracking behavior of conical-
scan radars.

7.1 TYPICAL ANTENNA SCANNING FUNCTION

Let us now calculate a typical antenna scanning function f or the
antenna pattern given in Figure 5 and for

e6 0.45*

T= 0.250

First, one calculates the angle of offset of the target axis with
respect to the centre of the beam. The pertinent parameters and geometry
required for this calculation are defined in Figure 8, where we are given a
head-on view of the antenna, which is shown as a contour map of relative
amplitude. The dashed circle represents the path of the target around the
antenna rotation axis. Actually it is the antenna beam that rotates and the
target that is stationary, but it is more convenient to formulate the
problem In terms of a stationary antenna and rotating target. From a
mathematical point of view the two are equivalent.
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Applying the same reasoning used in deriving eqn. (14) to the geometry
shown in Figure 8 and the law of cosines one can write the expression for the

off-beam-centre angle 8 as

6 (T) 2 + (eq) 2 - 2 eq8T coswt) . (45)

Using eqn. (45) to solve for e with the parameters listed above, we can
derive a typical antenna scanning function for the pattern given in Figure 5.
The result is given in Figure 9. The scanning function's general form can be

verified by comparing it with the contour lines intercepted by the target
path in Figure 8. As would be expected from the uniform spacing of the

contour lines in Figure 8 the scanning function is quite a good sinusoid.
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Figure 8. Head-on View of the Antenna Beam Shown as a Contour Plot of Constant Relative Amplitude.
A Target Path has been Sketched in to Derive a Typical Scanning Function.
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G' (%t)= 0.65 + 0.271 cos wst + 0.03 cos 2wst
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Figure 9. Comparison of an Antenna Scanning Function for OT = 0.25 Degrees (Dashed Curve) and a Function
(Solid Curve) Comprised of Harmonics of the Radar Scanning Frequency w

7.2 HARMONIC ANALYSIS

We now carry out a harmonic analysis of the antenna scanning function

given in Figure 9. Consider an even function g(t) whose period is 2p. Its

Fourier coefficient an is given by

2 nt (46)
ag(t) cos "dt.(

n 0

The integration may be performed numerically using the trapezoidal rule. If

for convenience we take At - p/8, eqn. (46) can be written as

a +g Ccos- +gCs csn
= a Z p (

or

a !" + g Cos i- + -- 8+ g7 cos + !- cos n (47)

where gO,g ,g2 ,...,g 8 , are the values of g at t-O, t, 2At,...,8At.
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The function g(t) can be written as
a0

g(t) _- + a coswt + a2 cos 2wt + a3 cos 3wt + a cos 4wt + a cos 5wt + ---

(48)

The coefficients of an are tabulated in Table 2 for the antenna scanning
function in Figure 9. Using these coefficients the scanning function is
calculated to be

G'(wst) = 0.65 + 0.27 cosw t + 0.03 cos 2w t + 0.03 cos 3w t + 0.0025 cos 4w t
S B s s s

- 0.0019 cos 5w t + (49)
s

The harmonic terms in eqn. (49) are small compared with the fundamental.
If eqn. (49) is truncated and only three terms retained it remains a very
close approximation to the antenna scanning function, as demonstrated in
Figure 9. If only two terms were retained it would still remain a good
approximation.

One can now define the necessary conditions for the validity of eqn.
(33) more succinctly. Simply stated, if the radar antenna scanning function
can be approximated by the first two terms of its Fourier series, eqn. (33)
accurately describes the behavior of a conical-scan radar tracking a low-angle
target. Since eqn. (33) was used as the basis for defining equivalent mono-
pulse patterns, the accuracy of this representation for a conical-scan radar
is determined by how closely the ac term of the antenna scanning function
resembles a sinusoid.

TABLE 2
Fourier Coefficients for the Ante:&,na Scanning Function in Figure 9

n 0 1 2 3 4 5

go 0.47 0.47 0.47 0.47 0.47 0.47

I Cos - 0.92 0.82 0.65 0.35 0 -0.352

Cos ME 0.82 0.58 0 -0.58 -0.82 -0.579
3nir

93 Cos 8 0.73 0.28 -0.52 -0.67 0 0.674

94cos - 0.62 0 -0.62 0 0.62 0

4 Cos 2
5nnr

g5 cos - 0.51 -0.20 -0.36 0.47 0 -0.508

Cos n- 0.46 -0.33 0 0.33 -0.46 0.326

_7 Cos 0.42 -0.39 0.30 -0.6 0 0.161

2os na 0.20 -. 20 0.20 -0.20 0.20 -0.20
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7.3 FURTHER EXAMPLES

Figure 10 gives antenna scanning functions for a number of values of
target error angle 6T- They start off being nearly sinusoidal for small
values of 6T but become increasingly distorted as OT increases. A visual
inspection of Figure 10 suggests that the harmonic content of the antenna
scanning functions increase rapidly for values of eT greater than about 0.4.

It is thought that the accuracy of the results obtained by applying the
monopulse transformations (eqns. (37) to (40)] to conical-scan radars will
vary inversely with the level of harmonic distortion in the antenna scanning
function. When applied to the Prelort radar, these transformations are
expected to give good results for 6T less than 0.4* and results that become
increasingly inaccurate as e becomes greater than 0.4. Although the results
given in Figure 7(b) show values for IeTj as high as 0.66, there is a tendency
for the maxima of 16TI to be less than 0.42. Therefore, it is thought that
the Prelort radar operated almost entirely within its linear region. There-
fore, the radar's behavior is thought to have been accurately described by the
monopulse transformations. The result in Figure 7(b) is probably typical for
a conical-scan radar tracking a low-angle target. Therefore, it appears that
the monopulse transformation technique for describing the behavior of conical-
scan radars with low-angle targets should have fairly widespread applicability.

1.0- 040(N( 0.60

0.20

-00.8*

-J .1.00

04-

0.2

0 - ----- :
TI25f T S 4v

e ust RADIANS

02-

Fipre 10. Family of Antenna Scanning Function& The Value of O is Indicae Along Side Each Curve.
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8. SUMMARY

This report has dealt with the problem of describing the behavior of
conical-scan radars tracking low-angle targets. Our approach has consisted
of demonstrating an equivalence between conical-scan and monopulse radars and
then using the better developed monopulse theory for describing the behavior
of conical-scan radars. This approach greatly simplifies the problem of
developing a theory for the low-angle behavior of conical-scan radars. The
resulting theory, summarized by eqn. (44), is a first-order theory applicable
only for small target error-angles. If greater accuracy is required one
needs to solve the slightly more complex equations [eqns. (31) and (32)]
using numerical techniques.

Some example antenna scanning functions were derived for a simulated
conical-scan antenna pattern. It was found that their harmonic content was
low for target error angles less than one-half of a BW. It follows that the
conical-scan radar theory based on monopulse transformations, is also probably
valid for target error angles less than about 0.5 BW. Since the example
experimental data exhibited maximum target angles that were generally less
than 0.5 BW, it is thought that the theory presented in this report is
probably adequate for describing the low-angle tracking behavior of conical-
scan radars.
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APPEND IX A

Monopulse Radar Error Voltage

A derivation of the error voltage for a monopulse radar is presented in
Appendix A. In Figure A.1 are given typical monopulse sum and difference
patterns. Direct and indirect signals are shown being intercepted by the
monopulse antenna patterns.

Expressions for the sum and difference radar voltages for the direct
and indirect signals can be written directly from Figure A.1.

SM gEd ETT e jt + g e p ETT ej(wt+O) (A.1)

ej t eJ(wt+o).
A = gAd ETT e + gAi p ETT e (A.2)

where E - Total sum-channel voltage

A = total difference-channel voltage

ETT M amplitude of direct signal from. the target

gAd = gain of the difference beam for the direct signal

gEd f gain of the sum beam for the direct signal

gi - gain of the difference beam for the indirect signal

gEi= Mgain of the sum beam for the indirect signal.

The radar error signal eM is defined as

A (A.3)

It is called an error signal because in a monopulse radar it is a linear
function of the angular displacement of the target from the beam axis. By
direct substitution of eqns. (A.1) and (A.2) into eqn. (A.3) we can write

gAdg~d + PcosO(gAdgEi+ ggigEd) + jpsinO(g AgEd-gAdgEi) + P2gigEi
SM 2 (A.4)gd+ 2pcos Ed + 2 2

The radar error signal can also be written as

sm pui~n l PM Rm



34

CM - =C + j Q (A.5)

where gAdgd + Oo(gAdgi+gAtgd ) + 2gAgE(
g~g~+ ~ ~i(A.6)

EM 2fi gd+ 2pcosO gdg + P2g2

and

C Q = sinO(g Atg~d - g~dg£1 (.7
Q M (A.7)

9 2 + 2pcosO g dg9 + P2g92
Ed Ed Ei + ig

I Q
The parameters em and E:M are called respectively the in-phase and

quadrature-phase components of the elevation radar error signal. Typically,
only CI is derived in a monopulse radar because for a single target and a
phase balanced radar receiver ca = 0.

If one allows g5i-*O and g-*O in eqns. (A.6) and (A.7), the resulting
expressions define the radar error signal for a single target. Single target
error signals are defined by

I gAd
M  g -d (A.8)

M
= 0. (A.9)

I - PATTERN

A PATTERN

-10 - -S -4 -2 0 2 4 s S 10

Fipuire A.?. Typical Monopule Sum (Z) and Difference (&) Patterm


